The 2-group of Linear Auto-equivalences of an Abelian Category and Its Lie 2-algebra
نویسنده
چکیده
For any abelian category C satsifying (AB5) over a separated, quasicompact scheme S , we construct a stack of 2-groups GL(C) over the flat site of S. We will give a concrete description of GL(C) when C is the category of quasi-coherent sheaves on a separated, quasi-compact scheme X over S. We will show that the tangent space gl(C) of GL(C) at the origin has a structure as a Lie 2-algebra.
منابع مشابه
On categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملar X iv : m at h / 03 04 17 3 v 3 [ m at h . R T ] 2 1 A pr 2 00 4 Quantum Groups , the loop Grassmannian , and the Springer resolution
We establish equivalences of the following three triangulated categories: Dquantum(g) ←→ D G coherent(Ñ ) ←→ Dperverse(Gr). Here, Dquantum(g) is the derived category of the principal block of finite dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra g; the category D coherent(Ñ ) is defined in terms of coherent sheaves o...
متن کامل